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can be defined using only the Hilbert norm of the space

W= fv e 220, mmi@n 3 ¢ t2o,mu @}

AMS(MOS) Subject Classification: Primary 31C15, 35K22
Secondary 31C25, 35K05, 46E39 ﬂ
Key Words: parabolic capacity, functional spaces, parabolic potentials,

varjational inequalities

Work Unit Number 1 - Applied Analysis

Sponsored by the United States Army under Contract No.DAAG29-80-C=0041., This
material is based upon work supported by the National Science Foundation under

Grant No. MCS78-=09525 A01.




"

e

B et

SIGNIFICANCE AND EXPLANATION

N
~.
N :

intensively developed in a functional analytic setting involving many function

In recent years, parabolic variational inequalities (V.I.) have been

spaces. As in the case of elliptic V.I., the tools of potential theory have
also proven to be most useful for solving and interpreting parabolic V.I.
Several facts exhibit a close relationship between the functional analytic and
potential theoretic approaches. Among them is the result provided in this
paper. Let us describe its content,

Just as for the Laplacian operator, a capacity had been associated with
the heat operator in order to solve various problems in potential theory. On
the other hand, functional spaces - mainly Sobolev spaces, had been introduced
to solve variational inequalities involving the heat operator. We prove here
that this capacity can be defined in terms of the topology naturally induced

by these functional spaces. This leads to interesting new results for
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parabolic variational inequalities.
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PARABOLIC CAPACITY AND S™SOLEV SPACES

Michel Pierre

INTRODUCTION

Let £ be an open subset of RN and T > 0. The usual parabolic capacity on
10,T[ x @ associated with the heat operator F = %E - A is defined by
¥ wclo,T{ x2  open, cplw) = [ af u,
10,T(xQ
where u, is the capacitary potential of w , that is the solution of the (formal)

variational inequality:
1 e = . =
u? a.e., u(0) 1 (0), ult, )|aQ 0

(1)

du du
3¢ Au > 0 , 3 Au = 0 on [u> lw] .

du
(Here 1 is the characteristic function of w . Note that FEu = 3—9 - Bfu is a
w w t w

nonnegative measure on 10,T[ x Q ). Another definition in terms of measures can also be
found in [2].
We show in this paper that this capacity can be defined using only the Hilbert norm of

the space:

v
3t

Namely, if we set, for any open subset w of jo,T( x Q2

W= {ve L20,mm @) ; cro,mm oy,

clw) = inf(ﬂvﬂz P v, a.e, }

where

ﬂvﬁi = “v“22 \ + H%%sz -1
L (OIT:HO(Q)) L7(0,T:H ()

then there exist a,b > 0 such that:

Sponsored by the United States Army under Contract No. DAAG29-R0-C-0041, This
material is based upon work supported by the National Science Foundation under
Grant. No, MCS78-09525 AOQl.

et = s e e e—————— - —_ - -




ad

(IT) v w,a-" co(w) € c(u) € b o co(w) . R
It is well-known that this space W arises as the natural space of test-functions in
numerous parabolic variational inequalities (V.I.) of type (1) (gee Lions-Stampacchia (4], ¢
Lions-Magenes {5), Lions (3], Mignot=-Puel [6] etc ...}. On the other hand, as in the
elliptic case, the tools of potential theory have also proven to be most useful to solve
and interpret these parabolic V.I. (see {11,(8]). The ahove result emphasizes the strong
relationship between the two approaches.
A direct consequence of (II) is that any element of (! has a quasi-continuous
representation, This fact (that we established in [8]) is an important tool tn deduce
fundamental properties about the structure of parabolic potentials (i.e. the functions
w e L20,mH (@)1 17(0,1:1%(2)) such that -g—: - du > 0) (see (8], [10] for these
results).
Another conseaquence is that, as in the elliptic case, "L2-estimates” can be used to
evaluate the parabolic capacity of a set. In the same spirit, we also show here the
following result: if wu is a parabolic potential greater than or equal to 1 on w, then
the capacity of w can be estimated by the norm of u in LZ(O,T;H;(Q))
o wo,miia).
Lastly, this suggests that for the nonlinear problems associated with operators of the

form
du

— =~ div A(x,u,Du),
ot
the natural capacity can be defined by the norm of

[ - [)
W o= {v - tPeo,mw Pan; -g—‘t’: - 1P o, P ()

P
where p < }1,®[ is suitably chosen and % + %, =1,

In this paper, we state our result in the general setting of Dirichlet parabolic
spaces so that it can he applied to general elliptic operators with Dirichlet, Neumann or

mixerd boundary conditisns,




1°). Parabolic Dirichlet space

Let X be a locally compact space, countable at the infinitvf £ a Radon measure on
X whose support is X. We denote K(X) (resp. K*(X)) the space of continuous (resp.
nonnegative and continuous) real functions with compact support in X . The space K(X)
is equipped with its usual locally convex topology.

Let V be a Hilbert space with the norm [+«l; we assume that V is embedded into
Lz(x), the space of (classes of) real square integrable functions with the norm

lul,, = [)f( w2 ]2,

Then, if V' is the dual space of V , we have

(n v o) S,
The scalar product in Lz(x) as well as the duality (V',V) will be denoted by (+,¢).

We will assume:

(2) K(X) n Vv is dense in V and K(X).
Example 1. (a) X =RY, v =g (@M, v\ = w-'@&Y).

(8) X = Q open set in RV

y V= H;(ﬂ), ve =u" Ny .
(y) X=0 , va= H‘(Q) (Q regular bounded open set in lN).
(8) X = {1 point}, verix) =R,
Given T > 0 , we denote Q0 = [0, T[ X X equipped with the Radon measure
dt © £ where dt is the Lebesgue measure on {0,T{ . K(Q) will denote the space of
continuous numerical functions with compact support in Q , equipped with its natural
topology.
Now, associated with V , V', we have
V=12(0,7;v) and its dual V' = t2(0,1:v").
W= {v’V, :—‘t’ ey .
These spaces are Hilbert spaces with the norms:
2 2

’o 2 2 _ T 2 2 _ v, 2
tviy, =$ Tv(t)1°at, vy, ({ Iv(e g, dt , vl = dvis e b,

Let us recall that ( is embhedded into C(([0,T(; Lz(x)) (see Lions~Magenes [5]).

Ti.at 1s X is the union of a countable number of compact subsets.

-3-




As a cnnsequence of (2), nne can shnw that (see [A]):
(3) KQ) - ' is dense in W and K(Q).

The ojerators Alt).

For a.e. t , let al(t,*,*) be a hilinear form on V x V sat
? (4) Vvuv -V 2V, t +> alt,u,v) is measurable
‘ (5) aM>0, viuv) -V xV, a.e. t = (0,7), |a(t,
% (%) da > 0 , vv <V, a,e, t < (0,T), a(t,v,v) >

f With a(t,*,*) and its adjoint a'(t,u,v) = a{t,v,u) are a
overators from Vo o into V' defined by
Yu,v <V, (A(t)u,v) = a(t,u,v), (A.(t)u,v) =
We will also assume that A(t) and A'(t) satisfy maximum
riamely that the contractions r — ’ri and r ~+ t+ a1 operat

a and a" that is:

+

Examples 2. Corresponding to the choices of X and V in the e

<uccessively choose:

Then, a(e,s¢,*) gatisfies (4) and (5), It satisfies (7) and

i n

| shc jarter paint is not A restrictinn,

- Fs -
(7) ¥vev, v «V, v «V and a.e. t ¢ (0,T), a(t,v ,v)2>0.
+ -
{ vvev, v A1V and Q
+ + ;
(8) l a.e. t ¢ (0,T), aft,u+u Al,u=-u A} >0
+ +
[ a(t,u = u A1, u+uArl)y>0.

N
] 9 3
(a) alt,u,v) = | ] a, 0,8 3%— 3%- ax + 7 b, (x,t) 3% v ax
= =1 i
i,7=1 EN i 3j i RN i
Al
+ f cn(x,t)u v dx ,
‘N
«@ N
where alj' hi‘ CO - L ((0,T( x R') and satisfy
N
. 2.

3a>0, vE. R, ¢ a; Sigj > al | 51) a.e, on 0O . }
i,3=1 12 i=1 .

caryafies (R) if e~ 2 A for A large enough. Since we will study paraholic rroperties,

isfying:

u,v)| € Mitul e« fkvi
aﬂvﬂz .

ssociated two continuous

*
a (t,u,v).

principle properties,

e on V eqguipped with 3

xamples above one can

(8) if 4 > 0 and
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(8), () One can choose a(e+,*,*) as .nove where one replaces R
tH Take a defined by
a., e. t € (0,T), vwu,v ¢ R, a(t,u,v) = a(t)uv ,

where a ¢ L"(O,T), a»0 .

Parabolic potentials.,

Definition l. We shall call parabolic potential any element of

Remark.

P 2 L 2

= {uer%0,Tv) 0 LT(0,TiL(X))s wv < [ with W(T) =0, v
ST - %% {t), u(t)) + alt,ult), v(t))]de » o}.
0

We will often omit the variable t in the integral above and write it as

fT ( v

- 3; . u) + a(u,v) .

Thanks to Hahn~Banach theorem, we have (see [B],[10]):

Proposition 1. Let u ¢ P : then there exists a unique Radon measure on 0 , den

Eu , such that

vv elWnKQ) with v(T) =0 ,

jT (- %% ) + afu,v) = [ valEu).
0

Q .
Details are given in (8], [10] about the space P ,1d the measures [Fu .

just make them explicit in a particular but typical example.

Example 3. Let X =Q , V = H;(Q), v = H"

HT)) and

¥t €[0,T], ¥Yu,ve V, a(t,u,v) = f Vu Vv
Q

Then, if u ¢ L2(0,T7H;(Q)) n 700,12 (2)),

(ue P) « (u>0, %% -8 20 in D'(10,T( x Q )).

Moreover,

+ du
Eu = u(0 )dx0 + 3t Mu ,

where dx, 18 the Lebesgue measure induced on {0} x 2 and

u(o’) = ess lim u{t) in Lz( 1A

t+0

More examples are given in ([8].

5=

>0,

oted

Let us
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2°) The main result.

Let us first recall the usual definition of the parabolic capacity associated with the

operators A(t).

For any open set w of 0O , we consider

FL = {u P;yu>1 a.e. on w}
Then, if ’g is not empty, it has a smallest element

of w (see [8], [10} for a proof).

Definition 1: For any open set w < 0 , we set
(
/ a Eu if p
n w (9
colw) = { %
+ if p
w

For any E - Q , we define:
capacity of E = ¢ (E) = inf
w ~E
w open
Now let us define two different capacities.
V"LQ(O,T;Lz(X)) with the norm:
hal? = ol + sup ess fu(e)(2 .
t<(0,T)

Definitions 2 and 3. For any open set w < Q ,

c, (W) = infftull s we P, u>

o, lw) = infﬁiv”w ;o ove W+, v >

For any E - @, we define:

£

e (E) = inf C1(m) . e (E)
s = FE
woopen

7@

]
®
.

co(w)

For that, we denote

we set:

1 a.e.

inf
w >F
w open

u
W

on

on

c_(w)

w}

w}

called the capacitary potential

A

the space
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Then, we have the main result.
Theorem 1. There exist a,b > 0 such that, for any E c Q : ﬁ
(1) a - co(E) < [c1(E)]2 Cb e co(E)
(ii) a - cg(E) < [cz(E)]2 $b s cylE) .
Remarks. According to this result, to estimate the parabulic capacity of a set E , one
can
(i) Find ueP with u > 1 on a neighborhood of E and compute the A=-norm

of u, or

(i1i) Find velW with v » 1 on a neighborhood of E and compute the (/~-norm
of v .
Note that the definition of c1(') still involves P and hence the operators a(t),

1-norm" as in the

but it uses the Hilbert-norms of UV and L2(x) instead of an "L
definition of co(w).
The interest of the definition of c2(°) is that it only involves the topology of the
Hilbert space W and does not depend on the operators A(t).
Recall that W&+ A ; gso the topology of A is weaker than the topology of (I .
i But it is also sufficient to estimate the capacity of a set if one uses elements of P .

1f c1(-) and cz(.) are not generally "strong" capacities, they are however "weak"

capacities. Namely:

Proposition 2.

T TOh O et R ey NPl S WS R A T e AP

(i) For i =0,1,2,
(a) Ey © Ep = ci(E1) < ci(Ez).
(b) For any nondecreasing sequence (E,} of subsets of Q
‘,
: cy ( Y En) = sup ci(En) .
(c) For any nonincreasing sequence (Kn) of compacts of 0

f = i .
c, ( n Kn) ng ci(Kn)

ri (ii) (Strong subadditivity) VE1,E2 <Q ,

" . €y (By ¥ E,) + c,(E, fEy) < co(E.) + Sy {Ey).

-7 -
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(iii) {"Weak" subadditivity) For i =1,2, v E1,£2 Q .,
ci(E1 - EZ) < ci(E1) + ci(Ez).
The properties of co( )} have already been studied in [8] (or [10]1); we shall nnt
veproduce the proofs here.
Only the property (b) is difficult for c1(-) and cz(-). It will result frorm
important properties of the spaces P and {' that will also be used to prove the part ':ij

of Theorem 1. But let us begin by the proof of (i) in Theorem 1 which is fairlv easw,

Proof of (i) in Theorem 1.

It is sufficient to prove it for any open set w = Q .
Let us prove that, if Pw £ 4 ;

. 2 1
(9) ﬂuwHA < (2 + E) co(w).

™

In order to compute, we need to approximate uw by more "regular" potentials. Tris .:

the purpose of the Theorem I-1 in [8] which says that the solution of:
A N

" = [ =
(10) uy # w, uX(O) uw(O), u, + X\at + A L u, (x> 0),

satisfies

u, € P, u, < u, v f a E uy < f dEfu ,

X 0 0 w

-+
and converges in L2(0,T;L2(x)) and weakly in V to u  when A+ 0 . But for any
t £(0,T):

2 2 t ty N PR
t@ lu)‘(t)l2 + 1/2Iu)\(0)|2 + g a(ux,ux) = [* 30t MUy, t tu, (1), u M.

Since 0 € u, ¢ v, < 1, the right-hand side {which is formallv egual %o

A
f u, d EUX) is less than f d Eux ({see [R] prop. I-3). Hence, for any \, v (=':
0,t]xX Q
2 , 2
s qu(t)lz’ ahuAH? < [ a E“A < cplw) .
vV o 1
Lettina A go to 0 gives (9) and the second inequality of(i) with b = 2 + <. 1




For the first inequality, let w < Q open an. u - P with u 2> 1 a.e. on . . For

+
any compact ¥ ¢ w , there exists Y ¢ K(Q)r (' eoual te 1 on X and with surport ir

w (see {8], Lemma II-2). Then, if uy is the capacitary potential of X , fu, :s

carried by K (see (B], (10!). Therefore:
(11) "o“”:é dEuK<é\l’dEuK.

Now, if u, is the solution of (10) where u, is replaced by u since

du
3t + A“A »0 and Y < u , we have:
T Bux 3
[vaEu = (w0),u,0)) + [7 ( 5=+ B,y
Q 0
du
T A
< (u(0), u,(0)) + ({ ['aT* Ay, ul.

Using u ¢ P, we obtain:
[ v aEuy < (), u0)) + (u), uymn+ Tatuu,) + e, .
0 0

Wwhen X\ goes to 0+, E u, converges to Eu in ti.r sense of measure. Hence, usina (11},

A
we have:
(T
(12) co(K) < |u(0)|2|uK(0)l2 + Iu(T)lzluK(T)I2 + : alu,uy) + alug,u) .

But if ﬂ» # ¢ there exists a nondecreasing sequence of compacts Kn z w such thas
co(Kn) converges to co(w) and uy, weakly converges to u, in UV (see for instance
{8] prop. II-4). Then, passing to t:e limit in (12), we obtain that there exists ¢
depending only on M (see (5)) such that:

co(w) < cHuHA HuwHA .

This together with (9) completes the proof of (i) in Theorem 1.

Proof of (ii) in Theorem 1.

It is a direct consequence of the part (i) and the followinag proposition.
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Froposition 3. There oxists ¥ > 0 guch that

(1) vu F, g9v .« with
) Sott < kiut .
\ u o, v w < kiu n
(i1) vv - W, T P with
A " .
v v, an s kvt
A G

Proof of Proposition 3.

For {i), giver u - f, we consider the solution v of:
- v * *
(13) v . U, w(T) = u(T }, ==+ A (t)v =72 (thu + Alt)u .

3t

By well-known results about these linear parabolic equations {see Lions-Magenes (S5]), such
a solution exists in @ and there exists a constant c¢ depending only on A(t) such

that:

*
SeulTil, + A (el + PACE ]

g,
[

That is:
foh, € klull ,
1§ 5

where k depends only on A(t). Moreover, we formally have:

2 * Su
- e [ = -1} = — + > 3 s F Y.
vy (v=u) + A (t)(v-u) Fy A(t)u > 0 (since u P
Since (v-u)(T) = 0 , by the maximum nrinciple, v » u . This formal computation can he

justified in the following way. Civen j LZ(O,T;Lz(X)), £ > N , let us consider the

solution « of:

. Iw
woo W, w(D) = 06, ==+ Altlw = £ .
3t
By the maximur principle (see (7)), f ¢ n =w 2 0 . Put
STGW . s T 3V * 5
; =+ Mt w,r o= v (T) w(Th+ [T~ o=+ A (t)v,w, .
no° 0 9t
Triz implies
T ST dw .
DT vmn) o= 02Ty, W (TY) 4 TSR afu,w) .
n n
Cinme W ¢ 0oand w i*, tve viprt=hzand =ide is nonneqative. As ¢ is arhitrarv, tVis
imnlie e ou
ver (i), juer 7 - ae: momsicler
. . . n
114 P Y S A R T AT o0 S MR A Y
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Using the results of Mignot-Puel [6], it can be shown (see also (8] Lemma II-1) that
u eP and is the limit in L2(0,T:L2(X)) and weakly in YV of the solution ue of the

penalized problem

du
P = __C -l - - = .
u, € F, ue(ﬂ) v(0), 3 ¢ A(t)ue e(ue v) 0 (e > 0)
But, for any t € (0,T):
du
1 2_4 2 t = [t €
5 lu (0) 13-4 v + £ alu_,u) ({ (5% + Au_su)
du
tr 1 - t £
= f >y (ue-v) ,ue-v) + f (—sz + Aue,v)
0 0
t 3 *
< (u (t),v(t)) = v(0),v(0)) + (j) (- TZ* Avu ) .

Passing to the limit gives

1 R TTAR: 1= 3 L A%, e il

s Iu(t)l2 a“u“u Iu(tlzlv(t)l2 + | AT L LI
Hence, there exists a constant k depending only on A(t) such that:

2
fully, < k divlig * fall, .
+
Since u € P and u » v , this completes the proof.
In order to prove the Proposition 2, let us introduce for any E ¢ Q :

+
“é ={v ¢0"; v=1lim v, in W with v, > 1 a.e. on a neighbourhood of E}.

n+e

P ={u <P qu < P with u = lim u  in vV, 1lim sup”un”A < lalt

E 2 n+o .
u{T) = lim un(T) in L (X) and un > 1 on a neighbourhood of E }.
n+o
If E= w 1is an open set, we immediately have:

+
W, = {v eW;:;v>»1 a.e. on uw}.

Rﬂ ={u<sP; u»1 a.e. on uwl,

Moreover, we verify that, for any E < Q :

¢, (E) inf{llullA ;ou e PE}

[}

cz(rz) 1m={uvnW ;v e an} .

Pemark that Uy is a closed convex set in W . Hence, if v is the projection of 0

on &g in the Hilbert snace W, then CZ(E) "VEHW .

“11=
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Lemma 1. For any nondecreasina sequence (En) of subsets of O

(i) W =

(ii) I

To prove Lemma 1, we will need the following consequence of the Proposition 3:
Lemma 2. There exists k > 0 such that, for any v -+ W , there exists w - W with:
w > |vl, Hwkw < kHva .

Proof of Lemma 2.

Let v ¢ W , by (ii) in Proposition 3, there exist U,y P such that

u, > v ,u

; > v g, Hah, < Kl

2
Now by (i) of the same proposition, there exists w - U with

? + | < + .
w3 u, U, lew kHu1 uZHA

+ -
Then, w?vVv + v = |v] and satisfied

bl < 2k2Hva .

W
Remark. As a consequence of (7), if v <V , then v', v and |v| also belona to Vv ar3
the norm of lv| in V can be estimated in terms of the norm of v .
But, there is no suci. estimate in W (see L. Tartar's remark in appendix). Howso

~mma 2 will be sufficient for our purpose,

broof of Lemma 1,

Let E = _ E ; the inclusions [l - { P < - P_ are ohvious.
nn E r E_' E n E
n n
Let v - o WF ; thon there exists v, < (' with v_ > 1 on a neighboarhood
n ' n o n
©of F_ and lv = vl <2 ", The serie L (v - v_ ) is converging in ' . ®v
n n n{t 1 n+1 n :
Trema 2, there exists w - U with
w_ @ -v Hw il € klly - v i, .
“n m|vn+1 nl’ ol Yo+t n i
“ence the serie . w is converaing in .
1 "t
Mow et g = v+ Y w.oo« If k> n:

n ; 14




> § > + F - e, W,
g v+ : wj v, ‘,'_‘(vj‘v| vj)-vk>1 a.e on  w

Hence, gn 21 a.e. on ¥ uk which is a neighhorhood of E and v = lim 9, in N
n+1

Therefore v €W .
Now let u € n P ; then there exists u_ ¢ P such that llu = u
n En n nV
1
: + - § = ’ . ’
A la(™) un('r)l2 - and u 2 1 on a neighborhood w of E, For any X > 0 , we
consider the solution of
A
LA w , vn(T) = un(T) ’

v+ AC + A.vx] = u_ + A(Au_ + A" )
n I n n n n'*

A A r_8 A
Then, by (8] Lemma IV-1, Yo > u . (Remark that formally vo-oe t A= 3Z(vn - un)

g

du
*
+ A (v: - un)) = X(sga + Aun) H] 0) . Moreover, for A fixed, vﬁ converges in {' to the

solution of

vA A vA(T) = u(T)

A
*
v+ x(--g-:—»« A'vY) = w4 A+ AW

Indeed:

A A
an - v "w < CA("“n - u"v + Iun(T) - u(T)Iz).

Since vﬁ > u 21 on mn, as in the proof of Lemma 2, for any X > 0 , we can

construct g: ¢ W converging in W to vx with g: ? 1 on a neighborhood of £ . Let us

choose 9 = q; such that ng - vaw < .

A
X
3 By Proposition 3, there exists uy € P with uy ’ 9 - vx and ”uX“A < kuqx -V
B “
} < kA. Moreover, by the results in (8], Section IV, there exists a convex combinatien o~

the vx (still denoted by vx ) such that:
- VX converges to u in U J

‘ -~ lim_ |l VX“ = [lull
+ A A
A+m

- a

-~ if u = inf{u . P ; v > vx}, u,- vx converges to 0 in A .




'

Them, e P T B Y on A petanbhorkeomd nf T g e e ey g6
. . . .
. - -
to u an t+ L\(?\ T vy ar e a0 (TY g LX) ant ham oo oo -y .
B
Hence e
Praonf o€ Proposition 7,
The propersinsg ~¢ <~ fed yve o shisee g T on', Tha pare fa' ot (1) is ntuisue,  The
! h

rnint (h) is a Yrect consenien~e af Lempa i,
Fer (e, remark tra*, for 1 - 1,0
c (K ) & anf ¢ fx Vv |
i r. n iTn

Mow, far £ > 0. there exists a peigkborron? | nf X ~
-

c1(uc) s CI(K) + €, C')("e) < cz(K) + e,

<

But as Kn is a sequence of compacts decreasing to K , for

K =2 . Hence:
n €
inf c (V. ) S c ¥ Yy < ¢ {u ) & c (XY + ¢ .
n i 'n i n i € i
For (iii), we use the suhaiditivity of fet . and Med,

Yn surc' that

r large enough,

2




3°) Application,

We proved in R' that the elements nf U are muasi-rontinuous. We will give here a
more direct proof usina essentially the equivalent ilefinirinn of the capacity given by
Theorem 1 in terms of the W=-norm, together with Lemma 2, (<ee also (7] for abstract
"elliptic" results of this kind).

We recall that, aiven a capacity c(*) on N :

NDefinition, A function v : Q0 + R is said to be quasi-continuous if there exists a

nonincreasing sequence of open set un : Q with

(1) lim c(w ) = 0
ne= n
(11) the restriction of v to the complement of w,

is continuous for all n .

Remark. This definition is clearly invariant when one rep’aces c¢(°*) by an " equivalent"

-

capacity c(e¢), that is a capacity satisfying for some a > O:
ab>0, E-0Q, asclE) ¢ [c(E)1® < peclE)

Hence the notion of quasi-continuity is the same for ~ur capacities co('\. c1(°\ and

().

c2 )

Theorem 2. Any element v of {4 has a unicue aqussi-continuous representation ; .
Remark, "Unique" means here that, if - is quasi-continuous and satisfies v = ; a.e.,

then v = ; quasi - everywhere (i.e. everywhere except on a set of zero capacity).

Proof of Theorem 2.

Let Vv - u; bydensity of K(¢) “W inW, there exist v W ~ K(Q) converging to v with

| - i < 4o
.2 Vn"' vn i "
n=1 n
" {z - o - > 27 a e
Ler L o= iz - O lvn‘1!z) vn(z)l } an Qp = n
nep
By Lemma 2, there exists w, - W with
’ - by k€ o - T,
wn Ivn‘1 vnl R Wy 'u' 3 vn“‘ vn "

. -n,
~ (wn) < czlzz L0y wn(z) > 2 1)) s ?nuw e

15«




THin proves that  lim C"“n) =0 , But, for any n:

[ope
lv (z) v tzy) ¢ 27" rz 4 4 ;n s n
el ' 7 < vz “p v .
Sorov. v, converges uniformly on the complement of each lp. The limit v is defined

muasi-everywhere (everywhere except on o Jn which is of zero capacity), <~ is ruas:-
cortinuous and v = v oa.e. .

- -
*nr trhe uninueness, let us consider v auasi-continuons with v = v a.e, and . a

~pancy of open sets associated with V-v (see the definition above). Then, &, =

e D ovo= v o0} w  is open for any n. Since {z < Q; v - v < 0 is of measure " ,

K B for all n . Hence:
w

cz{z S0 v = v <0} & 1im cz(An) = 1im cz(un) =0 .

n+eo n+o
*.u2a;%, The above property of the elements of W is a fundamental tool in the study ~¢
t~e structure of parabolic potentials as well as in the resolution of associateAd

4

varitational inequalities (see [9]).

Aprendix (Communication of L. Tartar) (see Lemma 2).
2 1, . %

N .
Proposigion. Given & a regular bounded set of W , for W= {v.L (D,T;Hotu)): -

-

M 'O,T;H-1(E))}, there does not exist any (continuous) function Cle):[0,®) + "0, =} giyen

- o

that
118 u-‘;-tlvt:x . S crivigy.
L7(0,T:;H )
1 1,2 .
ii2.f. Let a - HO(-) and fn- 1% (0,1) with
2
o206, Jf%w N\ =1, f converages inL (0,1) to 0 when n oaoes tn =
Lo0,1)
. A . 5
"4 - far oinstance Fn(t) = ; [1 + sin n = ¢ with X} =.2/1),
tow, applving (15) to v (t) = f (t)a , since Ivn| = fnlal, one would Rave:
plals <~ E P + dat T,
-1 on 2 -1 -
R (. L0, Hn " r..)
"»10 15
tal. NI Y .
'v-} ) ' u_’l,‘,\ ’
v ts noat true, (1€ fh,=Y tave for instance A _fx} = n sin n x).

~1h -

Ry s e p——
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